- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Barhoumi, Ahmad (1)
-
Lisovyy, Oleg (1)
-
Miller, Peter D (1)
-
Prokhorov, Andrei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The third Painlevé equation in its generic form, often referred to as Painlevé-III($$D_6$$), is given by $$ \frac{{\rm d}^2u}{{\rm d}x^2} =\frac{1}{u}\left(\frac{{\rm d}u}{{\rm d}x} \right)^2-\frac{1}{x} \frac{{\rm d}u}{{\rm d}x} + \frac{\alpha u^2 + \beta}{x}+4u^3-\frac{4}{u}, \qquad \alpha,\beta \in \mathbb C. $$ Starting from a generic initial solution $$u_0(x)$$ corresponding to parameters $$\alpha$$, $$\beta$$, denoted as the triple $$(u_0(x),\alpha,\beta)$$, we apply an explicit Bäcklund transformation to generate a family of solutions $$(u_n(x),\alpha + 4n,\beta + 4n)$$ indexed by $$n \in \mathbb N$$. We study the large $$n$$ behavior of the solutions $$(u_n(x), \alpha + 4n, \beta + 4n)$$ under the scaling $x = z/n$ in two different ways: (a) analyzing the convergence properties of series solutions to the equation, and (b) using a Riemann-Hilbert representation of the solution $$u_n(z/n)$$. Our main result is a proof that the limit of solutions $$u_n(z/n)$$ exists and is given by a solution of the degenerate Painlevé-III equation, known as Painlevé-III($$D_8$$), $$ \frac{{\rm d}^2U}{{\rm d}z^2} =\frac{1}{U}\left(\frac{{\rm d}U}{{\rm d}z}\right)^2-\frac{1}{z} \frac{{\rm d}U}{{\rm d}z} + \frac{4U^2 + 4}{z}.$$ A notable application of our result is to rational solutions of Painlevé-III($$D_6$$), which are constructed using the seed solution $(1,4m,-4m)$ where $$m \in \mathbb C \setminus \big(\mathbb Z + \frac{1}{2}\big)$$ and can be written as a particular ratio of Umemura polynomials. We identify the limiting solution in terms of both its initial condition at $z = 0$ when it is well defined, and by its monodromy data in the general case. Furthermore, as a consequence of our analysis, we deduce the asymptotic behavior of generic solutions of Painlevé-III, both $$D_6$$ and $$D_8$$ at $z = 0$. We also deduce the large $$n$$ behavior of the Umemura polynomials in a neighborhood of $z = 0$.more » « less
An official website of the United States government
